5 research outputs found

    Image quality assessment for iris biometric

    Get PDF
    Iris recognition, the ability to recognize and distinguish individuals by their iris pattern, is the most reliable biometric in terms of recognition and identification performance. However, performance of these systems is affected by poor quality imaging. In this work, we extend previous research efforts on iris quality assessment by analyzing the effect of seven quality factors: defocus blur, motion blur, off-angle, occlusion, specular reflection, lighting, and pixel-counts on the performance of traditional iris recognition system. We have concluded that defocus blur, motion blur, and off-angle are the factors that affect recognition performance the most. We further designed a fully automated iris image quality evaluation block that operates in two steps. First each factor is estimated individually, then the second step involves fusing the estimated factors by using Dempster-Shafer theory approach to evidential reasoning. The designed block is tested on two datasets, CASIA 1.0 and a dataset collected at WVU. (Abstract shortened by UMI.)

    Improving Iris Recognition through Quality and Interoperability Metrics

    Get PDF
    The ability to identify individuals based on their iris is known as iris recognition. Over the past decade iris recognition has garnered much attention because of its strong performance in comparison with other mainstream biometrics such as fingerprint and face recognition. Performance of iris recognition systems is driven by application scenario requirements. Standoff distance, subject cooperation, underlying optics, and illumination are a few examples of these requirements which dictate the nature of images an iris recognition system has to process. Traditional iris recognition systems, dubbed stop and stare , operate under highly constrained conditions. This ensures that the captured image is of sufficient quality so that the success of subsequent processing stages, segmentation, encoding, and matching are not compromised. When acquisition constraints are relaxed, such as for surveillance or iris on the move, the fidelity of subsequent processing steps lessens.;In this dissertation we propose a multi-faceted framework for mitigating the difficulties associated with non-ideal iris. We develop and investigate a comprehensive iris image quality metric that is predictive of iris matching performance. The metric is composed of photometric measures such as defocus, motion blur, and illumination, but also contains domain specific measures such as occlusion, and gaze angle. These measures are then combined through a fusion rule based on Dempster-Shafer theory. Related to iris segmentation, which is arguably one of the most important tasks in iris recognition, we develop metrics which are used to evaluate the precision of the pupil and iris boundaries. Furthermore, we illustrate three methods which take advantage of the proposed segmentation metrics for rectifying incorrect segmentation boundaries. Finally, we look at the issue of iris image interoperability and demonstrate that techniques from the field of hardware fingerprinting can be utilized to improve iris matching performance when images captured from distinct sensors are involved

    Image Quality Assessment for Iris Biometric

    No full text
    Iris recognition, the ability to recognize and distinguish individuals by their iris pattern, is the most reliable biometric in terms of recognition and identification performance. However, performance of these systems is affected by poor quality imaging. In this work, we extend previous research efforts on iris quality assessment by analyzing the effect of seven quality factors: defocus blur, motion blur, off-angle, occlusion, specular reflection, lighting, and pixel-counts on the performance of traditional iris recognition system. We have concluded that defocus blur, motion blur, and off-angle are the factors that affect recognition performance the most. We further designed a fully automated iris image quality evaluation block that operates in two steps. First each factor is estimated individually, then the second step involves fusing the estimated factors by using Dempster-Shafer theory approach to evidential reasoning. The designed block is tested on two datasets, CASIA 1.0 and a dataset collected at WVU. Considerable improvement in recognition performance is demonstrated when removing poor quality images evaluated by our quality metric. The upper bound on processing complexity required to evaluate quality of a single image is O(n 2 log n), that of a 2D-Fast Fourier Transform. Keywords: Iris image quality, iris recognition, quality factors, Dempster-Shafer theory, belief function, defocus blur, motion blu
    corecore